National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand: *Australian clinical guidelines for the diagnosis and management of atrial fibrillation 2018*¹

I would like to acknowledge the Traditional Owners of this Land on which we are meeting today.

I would also like to pay respect to the Elders past, present and emerging.
Prevalence

• Atrial fibrillation (AF) occurs in 2-4% of the population in developed nations like Australia.
• It is the most common recurrent arrhythmia faced in clinical practice, and it causes substantial morbidity and mortality.
• In 2016, AF and flutter was the underlying cause of 2,128 deaths in Australia, accounting for 1.3 percent of total deaths.
 • Six deaths due to atrial fibrillation and flutter each day.¹
• AF imposes a large and growing burden on healthcare resources, with hospitalisations being the major cost driver.²
 • 10 to 30% of patients with AF are admitted to hospital each year for cardiovascular and non-cardiovascular causes.³

Background

• These guidelines have been developed to assist Australian clinicians in the diagnosis and management of adult patients with AF
• They are informed by recent evidence interpreted by local experts to optimise application in an Australian context
• They are the first Australian guidelines on the topic
Working Group

• The guideline working group was facilitated by the NHFA, in partnership with the CSANZ.

• An expert working group was appointed comprising cardiologists, an epidemiologist and physician, a pharmacist, nurses, a consumer, general practitioners, a neurologist, and a cardiothoracic surgeon.

• A reference group was established comprising representatives of key stakeholder organisations with national relevance to the provision of AF care in Australia.
The process for developing the guidelines: literature review

- The working group generated clinical questions to form the basis of external literature searches in consultation with the clinical expert committees of NHFA and CSANZ and the reference group.
- Conducted by an external reviewer (Joanna Briggs Institute)
The process for developing the guidelines: governance

• Processes in place to ensure transparency, minimise bias, manage conflict of interest, and limit other influences during development.

• Recommendations developed using GRADE methodology (Grading of Recommendations Assessment, Development and Evaluation)
 • Strength of recommendation (weak or strong) AND
 • Quality of evidence
The process for developing the guidelines: review

- Public consultation period of 21 days in April 2018 on the draft manuscript
- NHFA and CSANZ clinical committee approval prior to and after public consultation
- NFHA and CSANZ board approval after public consultation
- Reviewed by key stakeholder organisations (reference group) prior to and after public consultation
- Endorsed by key stakeholder organisations
- Publication in peer review journals August 2018
What is new compared to international guidelines?

• First Australian AF guideline
• International guidelines on the diagnosis and management of AF are available,1,2 but individual recommendations can differ
• Based on new and emerging evidence (since the ESC 2016 guidelines):
 • Novel risk factors (obesity, sleep apnoea, sedentary lifestyle)
 • The use of catheter ablation
 • Combining anticoagulants and antiplatelets
• Based on consensus opinion:
 • Changed stroke prediction score – in nomenclature only – the sexless CHA\textsubscript{2}DS\textsubscript{2}-VA. (Recommended clinical thresholds for anticoagulation treatment remain the same as the ESC).
 • More emphasis on integrated care.

Recommendations
Screening and prevention
Screening and prevention

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GRADE quality of evidence</th>
<th>GRADE strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunistic point-of-care screening in the clinic or community should be conducted in people aged 65 years or more.</td>
<td>Moderate</td>
<td>Strong</td>
</tr>
<tr>
<td>Pacemakers and defibrillators should be interrogated regularly for atrial high-rate episodes (AHRES), and should be confirmed by atrial electrocardiogram (EGM) to be AF.</td>
<td>Moderate</td>
<td>Strong</td>
</tr>
</tbody>
</table>
Screening and prevention – practice points

• Opportunistic point-of-care screening
 • Devices that provide a medical quality electrocardiogram trace are preferred to pulse-taking or pulse-based devices for screening, because an electrocardiogram is required to confirm the diagnosis.

• Implantable device interrogation
 • Detection of AHREs on devices indicates a high risk of subsequent development of clinical AF.1,2 If AHRE is detected, further assessment of stroke risk factors and surveillance for development of clinical AF should be performed.3

Diagnostic work up and prevention

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GRADE quality of evidence</th>
<th>GRADE strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A transthoracic echocardiogram (TTE) should be performed in all patients with newly diagnosed AF.</td>
<td>Low</td>
<td>Strong</td>
</tr>
<tr>
<td>Intercurrent risk factors and comorbidities – including hypertension, diabetes, heart failure, valvular heart disease and alcohol excess – should be identified and their management considered an important component of treatment in patients with AF.</td>
<td>Low</td>
<td>Strong</td>
</tr>
</tbody>
</table>
Diagnostic work up and prevention – practice points

• TTE for all patients
 • A TTE can identify valvular heart disease and quantify left ventricular (LV) function and atrial size. Transoesophageal echocardiography (TOE) can be considered primarily where electrical or pharmacological cardioversion is indicated and the presence of intra-cardiac thrombus may affect timing.

• Risk factor identification
 • The more risk factors that an individual has, the greater the likelihood that a person will develop AF and more persistent AF.1,2 With the burden of AF increasing at rates greater than those predicted by known risk factors, there has been interest in several newer risk factors,3 including obesity, sleep apnoea, physical inactivity and prehypertension.4-8 Physician-led intervention of weight and risk factor management in overweight and obese patients has been shown to lead to a marked reduction in AF burden, and to an improvement in quality of life in patients with paroxysmal AF.9

Arrhythmia management
Arrhythmia management

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GRADE quality of evidence</th>
<th>GRADE strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A rhythm-control or a rate-control strategy should be selected, documented and communicated for all AF patients, and this strategy should be reviewed regularly.</td>
<td>Low</td>
<td>Strong</td>
</tr>
</tbody>
</table>
Arrhythmia management – practice point

• Rhythm or rate control strategy
 • Factors favouring rhythm over rate control include
 • patients who are younger, more physically active and highly symptomatic;
 • paroxysmal or early persistent AF;
 • LV dysfunction;
 • no severe left atrial enlargement;
 • adequate control of the ventricular rate is difficult to achieve.
 • A rate-control strategy may be used in preference to rhythm-control in patients with minimal symptoms or in those in whom attempts at maintaining sinus rhythm are likely to be or are futile.
Arrhythmia management – Acute rate control

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GRADE quality of evidence</th>
<th>GRADE strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta adrenoceptor antagonists or non-dihydropyridine calcium channel antagonists are recommended for acute control of the ventricular rate in haemodynamically stable patients, although caution is needed if given intravenously.</td>
<td>Low</td>
<td>Strong</td>
</tr>
</tbody>
</table>

Acute rate control of atrial fibrillation with rapid ventricular response
Acute rate control – practice points

• Oral administration of these agents is sufficient in many situations.
• A more rapid onset of action may be seen with careful administration of intravenous aliquots of metoprolol or esmolol.
• Intravenous verapamil must be used with extreme caution because of its strong negative inotropic effect.
• Digoxin may be considered in addition to the above agents, but it has a delayed onset of action and has a weak effect in terms of rate control, particularly when used as monotherapy.¹
• In patients with marginal haemodynamic reserve, established heart failure or other significant structural heart disease, amiodarone may be the most effective rate-control option

Recommendation

Beta adrenoceptor antagonists or non-dihydropyridine calcium channel antagonists should be the first-line agents used for long-term control of the ventricular rate.¹

GRADE

quality of evidence

Moderate

strength of recommendation

Strong

Chronic rate control of atrial fibrillation with rapid ventricular response

Ensure membrane-active antiarrhythmic rhythm control agents are ceased once rate control strategy adopted

Re-evaluate the potential role of a rhythm control strategy (in particular with catheter ablation) in heart failure patients with the goal of reversing systolic dysfunction and improving prognosis

LV left ventricular DHP dihydropyridine IV intravenous CI contraindications AV atrioventricular AF atrial fibrillation
Long-term rate control – practice points

• Digoxin can be useful as a second-line agent or in combination with beta-blockers or calcium antagonists
 • if used, serum concentration should be monitored -aim levels < 1.2ng/mL.
• Verapamil and diltiazem should not be used in the presence of left ventricular systolic dysfunction
• Amiodarone should be considered a last-line option, given its toxicity profile.
• Membrane-active rhythm-control agents (e.g. flecainide or sotalol) should not be continued in patients being started on or transitioned to a long-term rate-control strategy.
Arrhythmia management - acute rhythm control

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GRADE quality of evidence</th>
<th>GRADE strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical cardioversion should be performed urgently in haemodynamically unstable patients with AF.</td>
<td>Low</td>
<td>Strong</td>
</tr>
<tr>
<td>Electrical cardioversion can be considered – either as a first-line option or when pharmacological rhythm control fails – in haemodynamically stable patients, after consideration of thromboembolic risk.</td>
<td>Low</td>
<td>Strong</td>
</tr>
<tr>
<td>Flecainide can be considered for rapid conversion to sinus rhythm, either intravenously or orally, in patients without left ventricular systolic dysfunction, moderate left ventricular hypertrophy or coronary artery disease, after consideration of thromboembolic risk.</td>
<td>Moderate</td>
<td>Strong</td>
</tr>
</tbody>
</table>
Acute rhythm control – practice points

- There is a high spontaneous reversion rate to sinus rhythm for new onset AF within 48 hours, so a ‘wait and watch’ approach with rate control may be reasonable in a mildly symptomatic patient.

- Flecainide or amiodarone are the recommended drugs for pharmacologic cardioversion.
 - Flecainide results in earlier and more effective conversion to sinus rhythm when compared with amiodarone.\(^1,2\)
 - Atrioventricular nodal blocking medication should be administered to patients prior to flecainide to avoid 1:1 conduction of atrial flutter.

- In patients with an AF duration of more than 48 hours or of unknown duration, acute rhythm control should generally not be attempted unless left atrial thrombus is excluded with TOE.

Arrhythmia management - long-term rhythm control

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GRADE quality of evidence</th>
<th>GRADE strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flecainide can be considered in the maintenance of sinus rhythm in patients without left ventricular systolic dysfunction, moderate left ventricular hypertrophy or coronary artery disease.</td>
<td>High</td>
<td>Strong</td>
</tr>
<tr>
<td>Amiodarone can be considered for maintenance of sinus rhythm as a second-line agent or as a first-line agent in patients with left ventricular systolic dysfunction, moderate left ventricular hypertrophy or coronary artery disease.</td>
<td>High</td>
<td>Strong</td>
</tr>
</tbody>
</table>
Long term rhythm control strategies

See table 2 for factors favouring rhythm control strategy

- With AV nodal blocking agent
- Close monitoring of QT interval recommended
- May worsen heart failure, contraindicated in patients LVEF<40%
- Indicated in patients with heart failure with reduced ejection fraction, may be less effective than other AAD in maintenance of sinus rhythm

LV left ventricular CAD coronary artery disease AV atrioventricular AAD antiarrhythmic drugs AF atrial fibrillation CI contraindicated LVEF left ventricular ejection fraction
Long-term rhythm control – practice points

• Amiodarone has superior efficacy over other antiarrhythmic drugs (AADs) or placebo in maintenance of sinus rhythm. 1-3 4, 5
 • However, amiodarone is associated with potential long-term toxicities, and therefore should not be a first-line treatment choice
• Flecainide should be used in conjunction with an atrioventricular nodal block agent.
• Sotalol has modest efficacy in maintenance of sinus rhythm1, 2, 6, 7
 • torsades de pointes occurs in about 2% of patients8 necessitating close monitoring of the QT interval for all patients.9
• Beta blockers are generally regarded as less effective than AAD in the maintenance of sinus rhythm.4, 10, 11

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GRADE quality of evidence</th>
<th>GRADE strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catheter ablation should be considered for symptomatic paroxysmal or persistent AF refractory or intolerant to at least one Class I or III antiarrhythmic medication.</td>
<td>High</td>
<td>Strong</td>
</tr>
<tr>
<td>Catheter ablation can be considered for symptomatic paroxysmal or persistent AF in selected patients with heart failure with reduced ejection fraction.</td>
<td>Moderate</td>
<td>Strong</td>
</tr>
</tbody>
</table>
Percutaneous catheter ablation—practice points

- AF ablation is an effective procedure for appropriately selected patients with symptomatic AF. ¹
 - Recent evidence demonstrates that the procedure may have a mortality benefit in patients with heart failure.²
- In the discussion with the patient it is important to emphasise that 20–30% of ablation patients will require a second procedure within the first 12 months.
- Major complication rates from experienced Australian institutions have been about 1%.³
- In patients at increased risk of stroke, anticoagulation should be continued indefinitely, even following a successful procedure.

Surgical management of AF

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GRADE quality of evidence</th>
<th>GRADE strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical ablation of AF to restore sinus rhythm in the context of concomitant cardiac surgery may be considered for patients with symptomatic paroxysmal, persistent or long-standing persistent AF.</td>
<td>Moderate</td>
<td>Strong</td>
</tr>
</tbody>
</table>
Surgical management of AF– practice points

• Most of the studies comparing coronary artery bypass grafting (CABG) with concomitant surgical ablation of AF with CABG alone showed a reduction in AF recurrence, and no significant difference in morbidity or mortality.¹⁻⁴

Stroke prevention
Recommendation	**GRADE quality of evidence**	**GRADE strength of recommendation**
The CHA$_2$DS$_2$-VA score – the sexless CHA$_2$DS$_2$-VASc score – is recommended for predicting stroke risk in AF. | Moderate | Strong
Definitions and points in the CHA₂DS₂-VA score

<table>
<thead>
<tr>
<th>Score</th>
<th>Points</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1</td>
<td>Congestive heart failure – recent signs, symptoms or admission for decompensated heart failure; this includes both HFREF and HFPEF, or moderately to severely reduced systolic left ventricular function, whether or not there is a history of heart failure</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>History of Hypertension, whether or not BP is currently elevated</td>
</tr>
<tr>
<td>A<sub>2</sub></td>
<td>2</td>
<td>Age ≥75 years</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>Diabetes</td>
</tr>
<tr>
<td>S<sub>2</sub></td>
<td>2</td>
<td>History of prior Stroke or TIA or systemic thromboembolism</td>
</tr>
<tr>
<td>V</td>
<td>1</td>
<td>Vascular disease, defined as prior myocardial infarction or peripheral arterial disease or complex aortic atheroma or plaque on imaging (if performed)</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>Age 65–74 years</td>
</tr>
</tbody>
</table>
Predicting stroke risk – practice points

- To avoid the cumbersome practice of selecting different CHA$_2$DS$_2$-VASc thresholds for males and females when recommending anticoagulation, these guidelines recommend a sexless CHA$_2$DS$_2$-VASc score, abbreviated as CHA$_2$DS$_2$-VA score.

- Stroke risk factors may change over time due to ageing or development of new comorbidities.
 - Annual review of low-risk patients is recommended to ensure that risk is adequately characterised to guide oral anticoagulant (OAC) therapy.
Predicting stroke and bleeding risk

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GRADE quality of evidence</th>
<th>GRADE strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reversible bleeding factors should be identified and corrected in AF patients for whom anticoagulation is indicated.</td>
<td>Low</td>
<td>Strong</td>
</tr>
</tbody>
</table>
Bleeding risk factors

<table>
<thead>
<tr>
<th>Modifiable bleeding risk factors</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension (SBP >160)</td>
<td>Blood pressure control reduces the potential risk of bleeding</td>
</tr>
<tr>
<td>Labile INR (TTR <60%)</td>
<td>Consider changing to a NOAC</td>
</tr>
<tr>
<td>Concomitant medications including antiplatelet agents and NSAIDs</td>
<td>Minimise duration of double or triple therapy in patients with coronary disease and AF</td>
</tr>
<tr>
<td>Excess alcohol (>8 drinks per week)</td>
<td></td>
</tr>
<tr>
<td>Potentially modifiable bleeding risk factors</td>
<td>Correct these factors where possible</td>
</tr>
<tr>
<td>Anaemia</td>
<td></td>
</tr>
<tr>
<td>Impaired renal function</td>
<td>Monitor, especially in situations when renal function may be affected</td>
</tr>
<tr>
<td>Impaired liver function</td>
<td>Walking aids, footwear, aged care home review</td>
</tr>
<tr>
<td>Frailty and falls</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-modifiable bleeding risk factors</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced age</td>
<td>Stroke risk outweighs bleeding risk</td>
</tr>
<tr>
<td>History of major bleeding</td>
<td>Risk of recurrent stroke outweighs risk of bleeding</td>
</tr>
<tr>
<td>Previous stroke</td>
<td>The role of anticoagulation (warfarin only indicated) in this population is controversial</td>
</tr>
<tr>
<td>Dialysis-dependent kidney disease</td>
<td>Contraindication to NOACs (these patients are excluded from trials); consider advice from hepatologist</td>
</tr>
<tr>
<td>Cirrhotic liver disease</td>
<td>Individualise decisions about anticoagulation based on risk and benefit</td>
</tr>
<tr>
<td>Malignancy</td>
<td></td>
</tr>
<tr>
<td>Genetic or racial variation</td>
<td>Subgroup analyses from the NOAC versus warfarin RCTs suggest that, when warfarin is used, Asian patients are at higher risk of major bleeding and ICH than non-Asians; standard-dose NOACs appear to be as effective in Asians as non-Asians(^1) ICH risk is high in Aboriginal and Torres Strait Islander patients on anticoagulation(^2) Pay careful attention to blood pressure control in these populations</td>
</tr>
</tbody>
</table>

Prediction and minimisation of bleeding risk – practice points

- Patients at high risk of stroke are also at high risk of major bleeding.¹
- The net clinical benefit almost always favours stroke prevention over major bleeding
 - bleeding risk scores should **not** be used to avoid anticoagulation in patients with AF.
- Treating reversible bleeding risk should be prioritised to minimise the bleeding rate in patients on anticoagulants.

Stroke prevention

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GRADE quality of evidence</th>
<th>GRADE strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral anticoagulation therapy to prevent stroke and systemic embolism is recommended in patients with non-valvular AF (N-VAF) whose CHA2DS2-VA score is 2 or more, unless there are contraindications to anticoagulation.</td>
<td>High</td>
<td>Strong</td>
</tr>
<tr>
<td>Oral anticoagulation therapy to prevent stroke and systemic embolism should be considered in patients with N-VAF whose CHA2DS2-VA score is 1.</td>
<td>Moderate</td>
<td>Strong</td>
</tr>
<tr>
<td>Oral anticoagulation therapy to prevent thromboembolism and systemic embolism is not recommended in patients with N-VAF whose CHA2DS2-VA score is 0.</td>
<td>Moderate</td>
<td>Weak</td>
</tr>
</tbody>
</table>
Stroke prevention in atrial fibrillation
Stroke prevention – practice points

• The CHA\textsubscript{2}DS\textsubscript{2}-VA score should be used to determine a threshold at which oral anticoagulation therapy is recommended.
 • Asymptomatic patients with AF detected on opportunistic screening have a comparable stroke risk to symptomatic patients.
 • Patients with atrial flutter have a slightly lower stroke risk than patients with atrial fibrillation, but the risk still exists1 and many of these patients have episodes of atrial fibrillation so the same recommendations for anticoagulation apply.
 • The stroke risk for patients with implantable devices and incidentally detected AF appears to be lower than in the general AF population
 • Patients with a CHA\textsubscript{2}DS\textsubscript{2}-VA score of \geq 2 should have close follow-up for development of clinical AF, with consideration of OAC when an episode lasts for more than 24 hours.

Pharmacological stroke prevention

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GRADE quality of evidence</th>
<th>GRADE strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>When oral anticoagulation is initiated in a patient with N-VAF*, an NOAC – apixaban, dabigatran or rivaroxaban – is recommended in preference to warfarin.</td>
<td>Moderate</td>
<td>Strong</td>
</tr>
<tr>
<td>Antiplatelet therapy is not recommended for stroke prevention in N-VAF patients, regardless of stroke risk.</td>
<td>Moderate</td>
<td>Strong</td>
</tr>
</tbody>
</table>

*N-VAF refers to AF in the absence of moderate to severe mitral stenosis or mechanical heart valve.
Pharmacological stroke prevention – practice points

• Anticoagulation with warfarin reduces the risk of embolic stroke by 64% and of mortality by 26% when used in patients with N-VAF.¹

• Randomised data show that the NOACs are as good as or better than warfarin in reducing stroke and systemic embolism, and that bleeding rates are less or similar to warfarin. Intracranial haemorrhage (ICH) is significantly reduced with NOACs compared with warfarin.

• NOACs have minimal drug and food interactions, and do not need haematological monitoring, so are much easier for the patient and physician to use.²⁻⁵

• International normalised ratio (INR) monitoring may be difficult in remote Australian communities, and therefore NOACs have the capacity to greatly improve anticoagulant therapy in patients with N-VAF.

• The evidence for stroke prevention with aspirin is weak, and aspirin may have bleeding rates similar to OAC.⁶

Optimisation of anticoagulation

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GRADE quality of evidence</th>
<th>GRADE strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-of-care INR measurement is recommended in the primary care management of patients receiving warfarin.</td>
<td>Moderate</td>
<td>Strong</td>
</tr>
</tbody>
</table>

Practice point:
- Current point-of-care measurement of INR for warfarin therapy is most useful for patients who are generally stable and/or in acute situations where a timely result is needed to guide patient management.
Optimisation of anticoagulation

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GRADE quality of evidence</th>
<th>GRADE strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Careful assessment of the bleeding and ischaemic risks (i.e. stroke, new or recurrent cardiac ischaemia or infarction, and stent thrombosis) should be undertaken for patients with AF who have a long-term requirement for anticoagulation for stroke prevention and require dual antiplatelet therapy (DAPT) after acute coronary syndrome (ACS) or stent implantation (or both).</td>
<td>Low</td>
<td>Strong</td>
</tr>
</tbody>
</table>
Combining anticoagulants and antiplatelet agents

Kirchhof P, et al. 2016. Eur Heart J 2016; 37 (38): 2893-2962. By permission of OUP on behalf of the ESC. This algorithm is not included under the Creative Commons license of this publication. © ESC 2016. All rights reserved. For permissions email journals.permissions@oup.com.
Optimisation of anticoagulation – practice points

• Duration of triple therapy (aspirin, P2Y$_{12}$ inhibitor and OAC) should be as short as possible to minimise bleeding, while ensuring coverage of the initial period of high thrombotic risk.

• The risk of gastrointestinal bleeding in patients on triple therapy is likely to be reduced by concomitant administration of protein pump inhibitors.1

• Where DAPT is required in combination with OAC, aspirin and clopidogrel are recommended.

• Where OAC is used for AF, discontinuation of antiplatelet therapy should be considered 12 months after stent implantation, ACS, or both, with continuation of OAC alone.

Integrated management
Integrated management

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GRADE quality of evidence</th>
<th>GRADE strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>An integrated care approach is recommended; such an approach aims to provide</td>
<td>High</td>
<td>Strong</td>
</tr>
<tr>
<td>patient-centred comprehensive treatment delivered by a multidisciplinary team.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All patients prescribed pharmacotherapy for the management of AF, including</td>
<td>Low</td>
<td>Strong</td>
</tr>
<tr>
<td>core rhythm control and anticoagulation therapies, should have their</td>
<td></td>
<td></td>
</tr>
<tr>
<td>treatment adherence and persistence regularly monitored and supported using</td>
<td></td>
<td></td>
</tr>
<tr>
<td>accessible and patient-centred strategies.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fundamentals of integrated care in the management of atrial fibrillation
Integrated care – practice points

• Integrated care focuses on three fundamental aspects; multidisciplinary teams; patient-centred care with a focus on shared decision-making; and application of eHealth.¹, ²

• Long-term persistence to OAC tends to decrease over time; approximately one-third to half of patients discontinue therapy within 2.5 years of initiation.³, ⁴
 • Recent studies focus on improving adherence to anticoagulants via the use of electronic applications, with mixed results.
 • Earlier studies focused on educational and behavioural interventions, but did not generate enough evidence to determine their impact.⁵

• Regular monitoring and feedback of treatment adherence and persistence should be prioritised to optimise and standardise care and improve outcomes.

Working group acknowledgements

Professor David Brieger (Chair)
A/Professor John Amerena
Professor John Attia
A/Professor Beata Bajorek
Dr Kim Chan
Professor Ben Freedman
Dr Caleb Ferguson
Ms Tanya Hall
A/Professor Haris Haqqani
Dr Jeroen Hendriks
A/Professor Charlotte Hespe
Professor Joseph Hung
Professor Jonathan M. Kalman
Professor Prash Sanders
A/Professor John Worthington
Professor Tristan D. Yan
Professor Nick Zwar
Cia Connell (NHFA)
Publications

Full guideline in Heart, Lung, and Circulation

National Heart Foundation of Australia and the Cardiac Society of Australia and New Zealand: Australian Clinical Guidelines for the Diagnosis and Management of Atrial Fibrillation 2018

Contents

1. Rationale for these Guidelines
2. Key recommendations
3. Foreword
4. Epidemiology of Atrial Fibrillation
5. Pathogenesis of the 2018 Atrial Fibrillation Guidelines
6. Conflict of Interest Process
7. Development of Recommendations
8. Screening and Prevention
9. Atrial Fibrillation and Antiplatelet and Antithrombotic Therapy
10. Genetic Pre disposition
11. Clinical Presentation
12. Atrial Fibrillation in the Elderly
13. Electrophysiological Mechanisms of Atrial Fibrillation
14. Definition of Non-valvular Atrial Fibrillation
15. Cardioversion
16. Diagnosis of Atrial Fibrillation
17. Transesophageal Echocardiography
18. Atrial Fibrillation in Patients with Embolic Stroke of Undetermined Source
19. Diagnostic Prognostic Tests
20. Role of Invasive Approach to Untargeted Atrial Fibrillation
21. Management of Atrial Fibrillation and Antithrombotic Therapy
22. Management of Concomitant Disease in AF
23. Testing Risk Factors for Atrial Fibrillation
24. Detection and Management of Risk Factors and Concomitant Diseases
25. Atrial Fibrillation Management

Executive summary in Medical Journal of Australia

National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand: Australian clinical guidelines for the diagnosis and management of atrial fibrillation 2018

David Bridges, John Amerasinghe, John R Atar, Peter Beswick, John M Chan, Car Connolly, Ben Friedman, Caleb Ferguson, Tereza Hall, Paolo M Haghiban, Jurek Hendriks, Charlotte M Hopper, Joseph Hung, Jonathan M Kalman, Prashanthan Sanders, John Wighton, Tristan van H, Nicholas A Zavras

Atrial fibrillation (AF) is a burdensome condition with increasing prevalence. International guidelines on the diagnosis and management of AF are available, but individual recommendations may vary, and no guidelines have been developed specific to the Australian population.

These guidelines have been developed by the National Heart Foundation of Australia (NHFA) and the Cardiac Society of Australia and New Zealand (CSANZ) to assist Australian clinicians in the diagnosis and management of adult patients with AF. They are informed by recent evidence interpreted by local experts to optimise their application in an Australian context.

This executive summary provides important recommendations together with their strength of evidence and guidance for their implementation in clinical practice (grade points). The full clinical guidelines are available in Heart, Lung and Circulation at https://doi.org/10.1111/j.1440-1644.2009.05404.x.

Method

The NHFA, in partnership with the CSANZ, appointed an expert working group comprising cardiologists (including electrophysiologists), an epidemiologist and a pharmacist, nurses, a consumer, general practitioners, a neurologist, and a cardiothoracic surgeon. These subgroups prepared the provisional guidelines and, at later points, a reference group of representatives from key stakeholder organisations with national interest in the provision of AF care in Australia was formed. This group provided input into the scope of the guidelines and guideline content.

A draft of the guideline was open for a 21-day period of public consultation in April 2018 to capture stakeholder views and facilitate engagement. Appropriate governance processes were followed to ensure transparency, minimise bias, manage conflicts of interest and limit other influences during guideline development.

Key, evidence-based recommendations

- Screening, prevention and diagnostic work-up.
- Acute and chronic management with antithrombotic therapy and surgical ablation.
- Stroke prevention and optimal use of anticoagulants and integrated multidisciplinary care.

Changes in management as a result of the guideline:

- Opportunities: screening in the elderly or community is recommended to patients over 65 years of age.
- The importance of deciding between a rate and rhythm control strategy at the time of diagnosis and periodically thereafter is highlighted. Antiarrhythmic and catheter ablation (both percutaneous and surgical) are recommended as an alternative to medical therapy. In patients with atrial fibrillation and chronic rhythm control failure, rate or rhythm control should prompt consideration of pacemaker or surgical ablation.
- The use of DOAcs in AF is recommended to prevent stroke, which continues to be the most important adverse outcome. Anticoagulation with warfarin is recommended for a score of 0, while for a score of 1 and 2, relative risk of stroke and embolism is increased. No warfarin is no anticoagulants are recommended, preference to warfarin over NOACs.

An integrated care approach should be adopted, delivered by multidisciplinary teams, including patient education and the use of wireless tools and resources where available. Regular monitoring and feedback of risk factor control, treatment adherence and persistence should occur.
Resources on NHFA website

- MJA summary
- Full guideline
- External Presentation on each guideline
- FAQs
- Governance documents
- Algorithms and tables as separate documents
- Conflict of interest register
Questions?